

https://doi.org/10.34883/Pl.2022.12.3.026 УДК 617.7-007.681-07:[617.762.7+616.145.15]:616.43

Садовская О.П. 1 \boxtimes , Дравица Л.В. 1 , Шестакова Н.А. 2

- 1 Гомельский государственный медицинский университет, Гомель, Беларусь
- ² Республиканский научно-практический центр радиационной медицины и экологии человека, Гомель, Беларусь

Диагностическая значимость объема ретробульбарной клетчатки и диаметра верхнеглазничной вены в ранней диагностике глаукомы у пациентов с эндокринной офтальмопатией

Конфликт интересов: не заявлен.

Вклад авторов: концепция и дизайн исследования, редактирование – Дравица Л.В.; концепция исследования, обзор литературы, сбор материала, обработка, написание текста – Садовская О.П.; сбор материала, получение данных – Шестакова Н.А.

Подана: 04.07.2022 Принята: 26.09.2022

Контакты: dr.olgasadovskaya@gmail.com

Резюме

В статье проведена оценка диагностической значимости объема ретробульбарной клетчатки (РБК) и диаметра верхнеглазничной вены (ВГВ) в ранней диагностике вторичной глаукомы, развившейся на фоне эндокринной офтальмопатии (ЭОП).

Обследовано 175 пациентов (350 глаз и орбит) с различными формами и активностью ЭОП. Из них диагноз «впервые выявленная вторичная глаукома, развившаяся на фоне ЭОП» выставлен 30 пациентам (58 глаз и орбит). Всем пациентам проведена МРТ орбит с целью определения объема РБК и диаметра ВГВ.

Множественный линейный регрессионный анализ, заданный для ряда факторов, подтвердил, что объем РБК и диаметр ВГВ являются предикторами повышения офтальмотонуса у пациентов с ЭОП (β =0,45, p<0,001 и β =0,51, p<0,001 соответственно). Достоверной ассоциации для активности течения ЭОП не обнаружено (β =-0,01, p=0,49). Прогностическими маркерами вторичной глаукомы у пациентов с неактивным течением ЭОП являются показатели объема РБК свыше 16,2 см³ (чувствительность 93,1, 95% ДИ 83,3–98,1; специфичность 88,67, 95% ДИ 75,4–94,1; AUC=0,93 (p<0,0001)), а также диаметр ВГВ свыше 1,6 мм (чувствительность 91,4, 95% ДИ 81–97,1; специфичность 90%, 95% ДИ 79,5–96,2; AUC=0,96 (p<0,0001)).

В группе пациентов с активным течением ЭОП прогностическими маркерами симптоматической офтальмогипертензии являются показатели объема РБК свыше 17,5 см³ (чувствительность 83,1, 95% ДИ 71–91,6; специфичность 79,5, 95% ДИ 72,7–85,3; AUC=0,87 (p<0,001)) и диаметр ВГВ больше 1,7 мм (чувствительность 91,5%, ДИ 81,3–97,2; специфичность 91,8, 95% ДИ 86,6–95,5; AUC=0,97 (p<0,001)).

Установлено, что показатели объема РБК и диаметра ВГВ являются критериями ранней диагностики глаукомы у пациентов с неактивным течением ЭОП.

Ключевые слова: эндокринная офтальмопатия, ретробульбарная клетчатка, верхнеглазничная вена, симптоматическая офтальмогипертензия, вторичная глаукома

Olga P. Sadovskaya¹ ⊠, Lydmila V. Dravitsa¹, Natallia A. Shestakova²

- ¹ Gomel State Medical University, Gomel, Belarus
- ² Republican Scientific and Practical Center for Radiation Medicine and Human Ecology, Gomel, Belarus

Diagnostic Value of Orbital Fat Volume and Superior Ophthalmic Vein Diameter in the Early Diagnosis of Glaucoma in Graves Orbithopathy Patients

Conflict of interest: nothing to declare.

Authors' contribution: concept and design of the study, editing – Dravitsa L.; the concept of the study, literature review, collection of material, processing, writing the text – Sadovskaya O.; collection of material, data acquisition – Shestakova N.

Submitted: 04.07.2022 Accepted: 26.09.2022

Contacts: dr.olgasadovskaya@gmail.com

Abstract

The purpose of this study to assess the diagnostic value of orbital fat volume and superior ophthalmic vein diameter in the early diagnosis of glaucoma in Graves orbithopathy (GO) patients.

We examined 175 patients (350 eyes and orbits) with different forms and activity of Graves orbithopathy. In 30 patients (58 eyes and orbits) was diagnosed secondary glaucoma. All patients underwent magnetic resonance imaging (MRI) of the orbits and determined total orbital fat volume (TOFV) and superior ophthalmic vein (SOV) diameter.

Determined that the prognostic markers of secondary glaucoma in patients with inactive stage of GO are the level of TOFV \geq 16.2 cm³ (sensitivity 93.1, 95% CI 83.3–98.1; specificity 88.67, 95% CI 75.4–94.1; AUC=0.93 (p<0.001)), and SOV diameter \geq 1.6 mm (sensitivity 91.4, 95% CI 81–97.1; specificity 90%, CI 79.5–96.2; AUC=0.96 (p<0.001)).

Determination of TOFV and SOV diameter is a criterion for early diagnosis of glaucoma in patients with inactive stage of GO.

Keywords: Graves orbithopathy, orbital fat, superior ophthalmic vein, symptomatic ophthalmohypertension, secondary glaucoma

■ ВВЕДЕНИЕ

Эндокринная офтальмопатия (ЭОП) – прогрессирующее иммуноопосредованное воспалительное заболевание, в большинстве случаев ассоциированное с патологией щитовидной железы, проявляющееся патологическими изменениями в тканях орбиты с последующим вовлечением в процесс структур глазного яблока [1–3].

В патогенезе ЭОП основную роль отводят активации орбитальных фибробластов (ОФ) Т-лимфоцитами, продукции провоспалительных цитокинов и хемоаттрактан-

тов [4]. Активированные ОФ пролиферируют и способствуют секреции гликозаминогликанов (ГАГ), которые накапливаются между мышечными волокнами экстраокулярных мышц и в ретробульбарной клетчатке [5]. Установлено наличие нескольких субпопуляций ОФ (Thy1+, Thy1-), которые способны в ответ на воздействие фактора роста β (TGF- β) трансформироваться в миофибробласты или преадипоциты [6]. Миофибробласты в активную стадию ЭОП участвуют в поддержании воспалительного процесса за счет экспрессии CD40 (костимулирующего протеина), в последующем приводя к развитию фиброза в экстраокулярных мышцах и ретробульбарной клетчатке [7]. Преадипоциты трансформируются в зрелые жировые клетки, способствуя избыточному адипогенезу и гипертрофии ретробульбарной клетчатки (РБК) [7, 8].

В большинстве случаев активный двусторонний процесс при ЭОП, развивающийся на фоне патологии щитовидной железы, не вызывает трудностей в постановке диагноза. Однако необходимость проведения дифференциальной диагностики, уточнения объема поражения ретробульбарных тканей, исключения апикального синдрома требует у всех пациентов с подозрением на ЭОП дополнительных методов диагностики. Наиболее широко используемые методы визуализации при патологии орбиты — это ультразвуковое исследование ретробульбарной области (УЗИ), компьютерная томография (КТ) и магнитно-резонансная томография (МРТ).

При этом в клинической практике мы отдаем предпочтение MPT, так как данный метод является более чувствительным и специфичным для определения размера экстраокулярных мышц и оценки выраженности отека PБК с использованием Т2-взвешенных изображений с подавлением жира. Также MPT с высокой достоверностью позволяет определить диаметр зрительного нерва с оболочками и без оболочек, верхнеглазничной вены (ВГВ) и диагностировать компрессионно-ишемическую оптиконейропатию на латентной стадии.

Известно, что активное течение ЭОП осложняется компрессией и ишемией зрительного нерва (3H), расширением ВГВ и повышением уровня эписклерального и внутриглазного давления (ВГД) [9–11]. Поэтому у пациентов с высокоактивным течением процесса часто диагностируют кератопатию, компрессионно-ишемическую оптиконейропатию и симптоматическую офтальмогипертензию [1, 12]. Длительная офтальмогипертензия, пульс-терапия глюкокортикостероидами, избыточный фиброз экстраокулярных тканей и адипогенез способствуют переходу офтальмогипертензии во вторичную глаукому. Поэтому ранняя диагностика ЭОП и своевременное лечение активного процесса необходимы для профилактики развития вторичной глаукомы.

Однако во многих случаях диагностика глаукомы в данной подгруппе пациентов с использованием стандартного алгоритма затруднена в связи с морфометрической перестройкой параметров зрительного нерва, стойкими изменениями в поле зрения у пациентов с компрессионно-ишемической оптиконейропатией в неактивной стадии процесса [13, 14]. Поэтому поиск и внедрение новых диагностических критериев для раннего выявления вторичной глаукомы и выделения группы риска среди пациентов с ЭОП являются важной клинической задачей.

■ ЦЕЛЬ ИССЛЕДОВАНИЯ

Оценить диагностическую значимость объема РБК и диаметра ВГВ в ранней диагностике вторичной глаукомы, развившейся на фоне ЭОП.

■ МАТЕРИАЛЫ И МЕТОДЫ

Проведено исследование 175 пациентов (350 глаз и орбит) с различными формами и активностью ЭОП. Из них диагноз «впервые выявленная вторичная открытоугольная глаукома, развившаяся на фоне ЭОП» выставлен 30 пациентам (58 глаз и орбит).

Исследуемая группа пациентов с ЭОП была разделена на шесть подгрупп: 1 – тиреотоксический экзофтальм (ТЭ), 52 глаза (26 пациентов); 2 – липогенный вариант отечной формы (ЛВ), 36 глаз (18 пациентов); 3 – смешанный вариант отечной формы (СВ), 78 глаз (39 пациентов); 4 – миогенный вариант отечной формы (МВ), 64 глаза (32 пациента); 5 – пациенты с впервые выявленной вторичной глаукомой, развившейся на фоне ЭОП (ВГ), 58 глаз (30 пациентов); 6 – пациенты с неактивным течением ЭОП (НЭОП), 60 глаз (30 пациентов).

Группу контроля составили 30 человек (60 глаз и орбит), сопоставимых по возрасту и полу, без клинических признаков ЭОП, с нормальным уровнем ВГД, отсутствием в анамнезе глаукомы и без патологических изменений со стороны диска зрительного нерва и макулярной зоны по данным оптической когерентной томографии (ОКТ).

Алгоритм обследования пациентов с ЭОП включал: сбор жалоб, анамнеза, визометрию, определение характера зрения, определение объема монокулярных дукций на дуге Ферстера, экзофтальмометрию по Гертелю, тонометрию по Маклакову грузом массой 10 г, гониоскопию трехзеркальной линзой Гольдмана, биомикроскопию, офтальмоскопию, ультразвуковое исследование ретробульбарного пространства (OTI-scan US-3300, Канада), оптическую когерентную томографию сетчатки (Cirrus HD-OCT, Carl Zeiss, USA), статическую периметрию (Humphrey Zeiss HFA II 740i, Германия); использовалась пороговая программа SITA-Standart, тест 30-2.

С целью уточнения формы ЭОП, определения размера глазодвигательных мышц, наличия отека ретробульбарной клетчатки всем пациентам проведена МРТ орбит. МРТ-диагностика проведена на МР-томографе Signa Infinity, GE, с напряженностью магнитного поля в 1,5 Т, с использованием катушки для головы с одновременным исследованием обеих орбит. Протокол сканирования включал использование Т1, Т2 и fat sat импульсных последовательностей в аксиальной плоскости и Т1 в корональной плоскости при толщине срезов 2 мм. Определяли степень экзофтальма, размеры глазодвигательных мышц, наличие отека мышц и РБК. Объем РБК высчитан при помощи программы AxT1FSE3, Volume rendering, с выделением области интереса (ROI) и автоматическим подсчетом объема РБК в см³ для каждой орбиты. Локализацию ВГВ определяли в Т1 аксиальной плоскости, измерение диаметра ВГВ проведено в Т1 корональной плоскости в проекции верхней прямой мышцы.

Все пациенты консультированы эндокринологом. Диагноз патологии щитовидной железы установлен на основании анамнеза, данных осмотра и уровня гормонов щитовидной железы.

Постановка диагноза ЭОП осуществлялась с учетом клинико-симптоматического, офтальмологического и эндокринологического анамнеза с использованием классификации, предложенной Бровкиной А.Ф. (2006) [1].

Активность ЭОП определялась с помощью шкалы клинической активности CAS (Clinical Activity Score, Mourits et al., в редакции 1997 г.) в баллах для каждой орбиты по семи параметрам: два симптома и пять клинических признаков [15].

После обследования и постановки диагноза из исследования были исключены пациенты с другими формами вторичной глаукомы, пациенты с миопией и гиперметропией средней и высокой степени, пациенты с тяжелым соматическим статусом: сердечно-сосудистые заболевания (инфаркт миокарда, инсульт, флеботромбоз); цирроз печени, гепатит, почечная недостаточность, сахарный диабет.

Статистическая обработка данных производилась с использованием программного обеспечения – Microsoft Excel и пакета Statistica 12 (StatSoft Inc., USA). Количественные данные в группах проверялись на нормальность распределения с помощью теста Шапиро – Уилка (Shapiro – Wilk's W test), данные приведены в виде медианы (Me), первым и третьим квартилями Q25–Q75. Анализ взаимосвязи проводили с использованием рангового коэффициента корреляции Спирмена (rs). Критический уровень значимости при проверке статистических теорий принят равным p<0,05. После корреляционного анализа проводили множественный регрессионный анализ и ROC-анализ.

■ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Обследованы 175 пациентов с различными формами и активностью ЭОП. Из них диагноз «впервые выявленная вторичная глаукома, развившаяся на фоне ЭОП» выставлен 30 пациентам (58 глаз и орбит).

Результаты исследования представлены в виде таблиц с отображением медианы с интерквартильным размахом (верхний и нижний квартили), а также статистического уровня значимости при сравнении контрольной и исследуемых групп и различий в подгруппах (табл. 1).

При анализе данных общей характеристики исследуемых групп (табл. 1) выявлено статистически значимое увеличение протрузии глазных яблок по данным

Таблица 1 Общая характеристика исследуемых групп Table 1 Clinical characteristic of groups

Исследуемый показатель	Группа контроля, N=60	TЭ, N=52	ЛВ, N=36	CB, N=78	MB, N=64	ΒΓ, N=58	НЭОП, N=60
Ср. возраст,	49	51,5 [45;	52	49	52 [45; 59]	55*	54,5*
Ме [25; 75]	[38; 53]	58]	[45; 56]	[38; 56]		[62; 64]	[50; 59]
Экзофтальм, мм,	15	18,5 [18;	22*	25*	21*	23* [21;	18
Me [25; 75]	[14; 16]	19]	[20; 23,5]	[22; 26]	[20; 23]	24]	[17; 19]
Ср. длительность течения ЭОП, мес., Me [25; 75]	_	5 [4; 6]	6,5 [5; 8]	6 [5; 8]	6 [5; 9]	28 [24; 36]	31,5 [26; 42]
Активность процес- са по шкале CAS, Me [25; 75]	0 [0; 0]	3* [2; 3]	4* [3; 5]	6* [5; 7]	5* [4; 6]	2 [1; 2]	1 [1; 2]
ВГД, мм рт. ст.,	19	20	23*	27*	22*	27*	21*
Ме [25; 75]	[18; 20]	[19; 22]	[21; 24]	[23; 29]	[20,5; 24]	[26; 29]	[20; 22]
Диаметр ВГВ, мм,	1,1	1,0	1,4*	1,9* [1,6;	1,4*	1,9*	1,4*
Ме [25; 75]	[1,0; 1,2]	[1,0; 1,3]	[1,3; 1,7]	2,1]	[1,2; 1,6]	[1,8; 2,1]	[1,3; 1,5]

Примечание: * р<0,05 – статистическая значимость различий между контрольной и исследуемыми группами.

экзофтальмометрии у пациентов с липогенным вариантом (p<0,001), смешанным вариантом (p<0,001), миогенным вариантом отечной формы (p<0,001) и у пациентов со вторичной глаукомой, развившейся на фоне ЭОП (p<0,001).

При оценке средней длительности течения симптомов ЭОП по данным анамнеза установлено, что диагноз «впервые выявленная вторичная глаукома, развившаяся на фоне ЭОП» выставлен через Ме 28 (24; 36) мес. с момента дебюта заболевания до постановки диагноза. В остальных подгруппах пациентов с активным течением процесса диагноз ЭОП выставлен в среднем спустя 6 месяцев от первичной манифестации симптомов.

При оценке активности ЭОП по шкале CAS установлено, что пациенты с тиреотоксическим экзофтальмом и липогенным вариантом отечной формы имели слабоактивное и среднеактивное течение ЭОП (Ме 3 (2; 3) и Ме 4 (3; 5) соответственно). В подгруппе пациентов с миогенным и смешанным вариантом отечной формы выявлено высокоактивное течение процесса (Ме 5 (4; 6) и Ме 6 (5; 7) соответственно). В подгруппе пациентов со вторичной глаукомой диагноз «глаукома» выставлен в неактивной стадии процесса – Ме 2 (1; 2).

Статистически достоверных различий по уровню ВГД между контрольной группой и подгруппой пациентов с тиреотоксическим экзофтальмом не обнаружено (р=0,2). Выявлено статистически значимое повышение уровня ВГД по сравнению с контрольной группой у групп пациентов с липогенным, смешанным, миогенным вариантами отечной формы, а также у пациентов со вторичной глаукомой, развившейся на фоне ЭОП, и неактивным течением ЭОП (р<0,05). При анализе различий в подгруппах выявлено, что максимальные показатели офтальмотонуса характерны для пациентов со смешанным вариантом отечной формы (Ме 27 (23; 29) мм рт. ст.), что свидетельствует о развитии симптоматической офтальмогипертензии в активной стадии процесса в данной подгруппе пациентов (критерий Манна – Уитни, р<0,05). Уровень ВГД в подгруппе пациентов со вторичной глаукомой, развившейся на фоне ЭОП, составил Ме 27 (26; 29) мм рт. ст.

Статистическая обработка значений диаметра ВГВ по данным МРТ орбит выявила увеличение размера и статистически значимые различия в подгруппах с липогенным, миогенным и смешанным вариантом отечной формы, вторичной глаукомой и неактивным течением ЭОП по сравнению с контрольной группой (р<0,001). При этом максимальное расширение диаметра ВГВ выявлено в подгруппах пациентов со вторичной глаукомой – Ме 1,9 (1,8; 2,1) мм, а также со смешанным вариантом отечной формы – Ме 1,9 (1,6; 2,1) мм, что на 72% больше по сравнению с контрольной группой (р<0,001).

Данные корреляционного анализа указывают на наличие высокой положительной корреляции между диаметром ВГВ и уровнем ВГД (rs=0,75; значение корреляции статистически достоверно, p<0,05) (рис. 1), что свидетельствует о тенденции к повышению уровня ВГД при расширении диаметра ВГВ.

Анализ данных об объеме РБК (табл. 2, рис. 2) выявил статистически значимое увеличение объема во всех исследуемых подгруппах в сравнении с группой контроля.

Учитывая волюметрические данные РБК, с целью детализации состояния клетчатки во всех группах пациентов проведен анализ Т2-взвешенных изображений с жироподавлением (fat sat). Установлено, что среди пациентов со вторичной глаукомой увеличение объема РБК обусловлено гипертрофией и усилением плотности

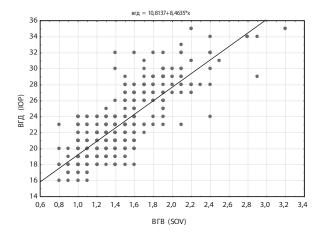


Рис. 1. Корреляционный анализ уровня ВГД и диаметра ВГВ Fig. 1. Correlation analysis of IOP level and SOV diameter

Таблица 2 Показатели объема РБК в контрольной группе и исследуемых подгруппах Table 2

Total orbital fat volume in clinical groups

5 .							
Исследуемый показатель	Группа контроля, N=60	TЭ, N=52	ЛВ, N=36	CB, N=78	MB, N=64	ΒΓ, N=58	НЭОП, N=60
Объем РБК, см ³ , Ме [25; 75]	12,2 [11,1; 13,2]	14,7 [13,2; 16,1]	16,6 [14,3; 17,5]	20,1 [17,8; 24,5]	16,0 [13,9; 16,9]	19,3 [17,7; 22,9]	14,2 [13,3; 15,6]
Уровень значи- мости, р		<0,001	<0,001	<0,001	<0,001	<0,001	<0,001

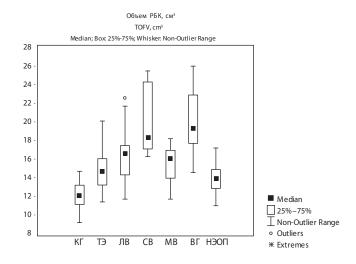


Рис. 2. Объем ретробульбарной клетчатки в исследуемых группах Fig. 2. Total orbital fat volume in clinical groups

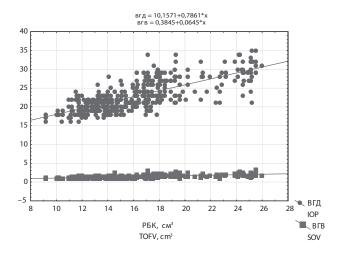


Рис. 3. Корреляционный анализ показателей объема РБК и диаметра ВГВ с уровнем ВГД Fig. 3. Correlation analysis of TOFV and SOV diameter with intraocular pressure

клетчатки в 100% случаев. В то же время среди пациентов с отечной формой ЭОП увеличение объема РБК в большинстве случаев было обусловлено отеком клетчатки.

Корреляционный анализ (рис. 3) выявил умеренную положительную связь между объемом РБК и диаметром ВГВ (коэффициент корреляции Спирмена равен 0,65, p<0,05), а также высокую положительную связь между объемом РБК и уровнем ВГД (rs=0,74, p<0,05).

Учитывая наличие корреляции между показателями уровня ВГД, объемом РБК и диаметром ВГВ, с целью оценки их диагностической ценности для постановки диагноза симптоматической офтальмогипертензии в активной стадии процесса или вторичной глаукомы в неактивной стадии выполнен множественный линейный регрессионный анализ и ROC-анализ (Receiver Operating Characteristic analysis).

Множественный линейный регрессионный анализ, заданный для ряда факторов, подтвердил, что объем РБК и диаметр ВГВ являются предикторами повышения офтальмотонуса у пациентов с ЭОП (β =0,45, p<0,001 и β =0,51, p<0,001 соответственно). Коэффициент множественной детерминации R^2 = 0,75. Достоверной ассоциации для активности течения ЭОП не обнаружено (β =-0,01, p=0,49) (табл. 3).

Таблица 3 Множественный линейный регрессионный анализ офтальмотонуса с объемом РБК, диаметром ВГВ, активностью течения ЭОП Table 3

 Multiple linear regression analysis of intraocular pressure with TOFV, SOV diameter, activity of GO

 Предикторы
 В
 Станд. ошибка
 р

Предикторы	ß	Станд. ошибка	р
Объем РБК	0,45	0,03	<0,001
Диаметр ВГВ	0,51	0,03	<0,001
Активность по шкале CAS	-0,01	0,02	0,49

Примечания: В – нестандартизированный регрессионный коэффициент; р – уровень значимости.

У пациентов с активным течением ЭОП одним из диагностических критериев постановки диагноза симптоматической офтальмогипертензии явились показатели объема РБК, составляющие более 17,5 см³ (чувствительность 83,1, 95% ДИ 71–91,6; специфичность 79,5, 95% ДИ 72,7–85,3). Диагностическая точность критерия (AUC) = 0.87 (p<0,001) (рис. 4).

Также диагностическим критерием для постановки диагноза симптоматической офтальмогипертензии в активной стадии процесса определен диаметр ВГВ свыше 1,7 мм (чувствительность 91,5%, ДИ 81,3–97,2; специфичность 91,8, 95% ДИ 86,6–95,5). Диагностическая точность (AUC) показателей диаметра ВГВ составила 0,97 (p<0,001) (рис. 4).

Согласно литературным данным, увеличение диаметра ВГВ по данным МРТ, КТ орбит у пациентов с активным течением ЭОП исследователи соотносили с суб- и декомпенсированным отечным экзофтальмом в результате затруднения венозного оттока из орбиты [9]. Lima Bda R. (2013) рассматривал увеличенный диаметр ВГВ как патогномоничный признак компрессионно-ишемической оптиконейропатии [16]. По нашим данным, расширение ВГВ приводит к нарушению гидродинамики глаза и развитию симптоматической офтальмогипертензии у пациентов в активной стадии процесса, а при переходе в неактивную стадию является возможным прогностическим маркером развития вторичной глаукомы.

Поэтому для установления диагностической значимости определения объема РБК и диаметра ВГВ для постановки диагноза вторичной глаукомы у пациентов с неактивным течением процесса также проведен ROC-анализ.

У пациентов с неактивным течением процесса установлено, что диагностическая значимость (AUC) объема РБК составила 0,93 (p<0,001). Оптимальным критерием для

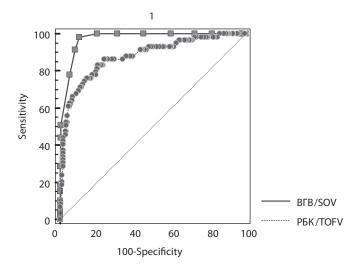


Рис. 4. Характеристическая кривая (ROC-кривая) определения объема РБК и диаметра ВГВ в диагностике симптоматической офтальмогипертензии у пациентов с активным течением ЭОП Fig. 4. Characteristic curve (ROC-curve) of the diagnostic value of TOFV, SOV diameter in determination of symptomatic ophthalmogypertension in active stage of GO

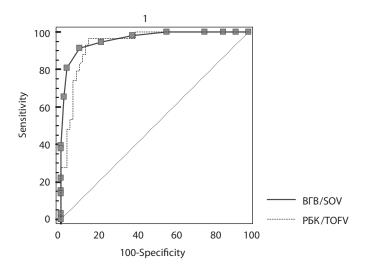


Рис. 5. Характеристическая кривая (ROC-кривая) определения объема РБК и диаметра ВГВ в диагностике вторичной глаукомы у пациентов с неактивным течением ЭОП Fig. 5. Characteristic curve (ROC-curve) of the diagnostic value of TOFV, SOV diameter in determination of secondary glaucoma in inactive stage of GO

постановки диагноза вторичной глаукомы явился объем РБК свыше 16,2 см³ (чувствительность 93,1, 95% ДИ 83,3–98,1; специфичность 88,67, 95% ДИ 75,4–94,1).

Также диагностическим критерием постановки диагноза вторичной глаукомы является диаметр ВГВ свыше 1,6 мм (чувствительность 91,4, 95% ДИ 81–97,1; специфичность 90%, 95% ДИ 79,5–96,2). Диагностическая точность (AUC) показателей диаметра ВГВ составила 0,96, 95% ДИ 0,91–0,98 (p<0,001) (рис. 5).

■ ЗАКЛЮЧЕНИЕ

Проведенный ROC-анализ выявил, что в группе пациентов с активным течением ЭОП показатели объема РБК свыше 17,5 см³ (чувствительность 83,1, 95% ДИ 71–91,6; специфичность 79,5, 95% ДИ 72,7–85,3; AUC=0,87 (p<0,001)) и диаметра ВГВ больше 1,7 мм (чувствительность 91,5%, ДИ 81,3–97,2; специфичность 91,8, 95% ДИ 86,6–95,5; AUC=0,97 (p<0,001)) являются прогностическими маркерами симптоматической офтальмогипертензии.

Прогностическими маркерами вторичной глаукомы у пациентов с неактивным течением ЭОП являются показатели объема РБК свыше 16.2 см^3 (чувствительность 93.1, 95% ДИ 83.3-98.1; специфичность 88.67, 95% ДИ 75.4-94.1; AUC=0.93 (p<0.001)), а также диаметра ВГВ свыше 1.6 мм (чувствительность 91.4, 95% ДИ 81-97.1; специфичность 90%, 95% ДИ 79.5-96.2; AUC=0.96 (p<0.001)).

■ ЛИТЕРАТУРА/REFERENCES

- 1. Brovkina A.F. Endocrine ophatholmopathy. Moscow: Geotar Media. 2004. (in Russian)
- Dedov I.I., Melnichenko G.A., Sviridenko N.Yu., Troshina E.A., Fadeev V.V., Belovalova I.M. Federal clinical recommendations on diagnostics and treatment of endocrine ophthalmopathy associated with autoimmune thyroid pathology. *Problems of Endocrinology*. 2015;1:61–74. doi: 10.14341/probl201561161-74. (in Russian)
- Gontarz-Nowak K., Szychlińska M., Matuszewski W., Stefanowicz-Rutkowska M., Bandurska-Stankiewicz E. Current Knowledge on Graves' Orbitopathy. J Clin Med. 2020;23(10):16. doi: 10.3390/icm10010016
- Khong JJ., McNab A.A., Ebeling P.R. Pathogenesis of thyroid eye disease: review and update on molecular mechanisms. Br J Ophthalmol. 2016;100(1):142–150. doi: 10.1136/bjophthalmol-2015-307399
- Stan M.N., Bahn R.S. Risk factors for development or deterioration of Graves' ophthalmopathy. Thyroid. 2010;20(7):777–783. doi: 10.1089/ thy.2010.1634
- Han R., Smith T.J. T helper type 1 and type 2 cytokines exert divergent influence on the induction of prostaglandin E2 and hyaluronan synthesis by interleukin-1beta in orbital fibroblasts: implications for the pathogenesis of thyroid-associated ophthalmopathy. Endocrinology. 2006;147(1):13–19. doi: 10.1210/en.2005-1018
- Li H., Fitchett C., Kozdon K., Jayaram H., Rose G.E., Bailly M., Ezra D.G. Independent adipogenic and contractile properties of fibroblasts in Graves' orbitopathy: an in vitro model for the evaluation of treatments. PLoS One. 2014;21;9(4):95586. doi: 10.1371/journal.pone.0095586
- 8. Brandau S., Bruderek K., Hestermann K., Görtz G.E., Horstmann M., Mattheis S. Orbital Fibroblasts From Graves' Orbitopathy Patients Share Functional and Immunophenotypic Properties With Mesenchymal Stem/Stromal Cells. Invest Ophthalmol Vis Sci. 2015;56(11):6549–57.
- Brovkina A.F. Optic neuropathy and exophthalmos edematous: symptom or complication? Ophthalmology Journal. 2020;13(1):71–76. doi: 10.17816/OV25334. (in Russian)
- Lo C., Ugradar S., Rootman D. Management of graves myopathy: Orbital imaging in thyroid-related orbitopathy. JAAPOS. 2018;22(4):256.e1–256. e9. doi: 10.1016/j.jaapos.2018.06.002
- Potemkin V.V., Goltsman E.V., Kovaleva M.S. Episcleral venous pressure level in patients with thyroid associated orbitopathy. Ophthalmology Journal. 2018;11(3):21–25. doi: 10.17816/OV11321-25. (in Russian)
- Brovkina A.F., Stoyukhlna A.S. Classification of endocrine ophthalmopathy. Problems of Endocrinology. 2006;52(5):11–15. doi: 10.14341/ probl200652511-15. (in Russian)
- Park K.A., Kim Y.D., In Woo K. Optical coherence tomography measurements in compressive optic neuropathy associated with dysthyroid orbitopathy. Graefes Arch Clin Exp Ophthalmol. 2016;254(8):1617–1624. doi: 10.1007/s00417-016-3335-9
- Forte R., Bonavolontà P., Vassallo P. Evaluation of retinal nerve fiber layer with optic nerve tracking optical coherence tomography in thyroidassociated orbitopathy. Ophthalmologica. 2010;224(2):116–21. doi: 10.1159/000235925
- Mourits M.P., Prummel M.F., Wiersinga W.M., Koornneef L. Clinical activity score as a guide in the management of patients with Graves' ophthalmopathy. Clin Endocrinol (Oxf). 1997;47(1):9–14. doi: 10.1046/j.1365-2265.1997.2331047.x
- Lima Bda R., Perry J.D. Superior ophthalmic vein enlargement and increased muscle index in dysthyroid optic neuropathy. Ophthalmic Plast Reconstr Surg. 2013;29(3):147–9.